Eigenvalues and Resonances Using the Evans Function
نویسندگان
چکیده
In this expository paper, we discuss the use of the Evans function in finding resonances, which are poles of the analytic continuation of the resolvent. We illustrate the utility of the general theory developed in [13, 14] by applying it to two physically interesting test cases: the linear Schrödinger operator and the linearization associated with the integrable nonlinear Schrödinger equation.
منابع مشابه
Complex Resonances in Acoustic Waveguides
We consider a two-dimensional innnitely long acoustic waveguide formed by two parallel lines containing an arbitrarily shaped obstacle. The existence of trapped modes that are the eigenfunctions of the Laplace operator in the corresponding domain subject to Neumann boundary conditions was proved by Evans, Levitin & Vassiliev (1994) for obstacles symmetric about the centreline of the waveguide. ...
متن کاملTracking the movement of eigenvalues via a corresponding Evans function
In this paper we define the Evans function for Sturm-Liouville problems. We show that the Evans function is analytic in the spectral parameter, has zeros in one-to-one correspondence with the eigenvalues, and is under certain conditions what we call conjugate symmetric. We conclude by showing that the Evans function can be used to track the movement of the eigenvalues as the coefficients in the...
متن کاملJu l 2 00 6 Schrödinger operators on zigzag graphs
We consider the Schrödinger operator on zigzag graphs with a periodic potential. The spectrum of this operator consists of an absolutely continuous part (intervals separated by gaps) plus an infinite number of eigenvalues with infinite multiplicity. We describe all compactly supported eigenfunctions with the same eigenvalue. We define a Lyapunov function, which is analytic on some Riemann surfa...
متن کاملSchrödinger operators on zigzag periodic graphs
We consider the Schrödinger operator on the so-called zigzag periodic metric graph (a continuous version of zigzag nanotubes) with a periodic potential. The spectrum of this operator consists of an absolutely continuous part (intervals separated by gaps) plus an infinite number of eigenvalues with infinite multiplicity. We describe all compactly supported (localization) eigenfunctions with the ...
متن کاملQuantized open chaotic systems
Two different “wave chaotic” systems, involving complex eigenvalues or resonances, can be analyzed using common semiclassical methods. In particular, one obtains fractal Weyl upper bounds for the density of resonances/eigenvalues near the real axis, and a classical dynamical criterion for a spectral gap.
متن کامل